- (3) (a) S. F. Boys, *Rev. Mod. Phys.*, 32, 296 (1960); J. M. Foster and S. F. Boys, *ibid.*, 32, 300 (1960); S. F. Boys, "Quantum Theory of Atoms, Molecules, and the Solid State", Per-Olov Löwdin, Ed., Academic Press, New York, N.Y., 1966, p 253.
 (4) W. Al. Lincomb Aco. Cham. Res. 6, 257 (1973).
- (4) W. N. Lipscomb, Acc. Chem. Res., 6, 257 (1973).
 (5) I. R. Epstein, D. S. Marynick, and W. N. Lipscomb, J. Am. Chem. Soc., 95, 1760 (1973).
- (6) R. S. Mulliken, J. Chem. Phys., 23, 1833, 1841, 2338, 2343 (1955).
 (7) R. J. Buenker and S. D. Peyerimhoff, Chem. Phys. Lett., 3, 37 (1969); J. Chem. Phys., 45, 3682 (1966).
- (8) (a) T. A. Halgren and W. N. Lipscomb, Proc. Nat. Acad. Sci. U.S.A., 69, 652 (1972); (b) T. A. Halgren and W. N. Lipscomb, J. Chem. Phys., 58, (1973); (c) T. A. Halgren, D. A. Kleier, J. H. Hall, Jr., L. D. Brown, and W. N. Lipscomb, to be submitted.
 (9) B₈H₁₂, R. E. Enrione, F. P. Boer, and W. N. Lipscomb, *Inorg. Chem.*, 3,
- 1659 (1964).
- (10) B₈H₁₃⁻, R. Lewin, P. G. Simpson, and W. N. Lipscomb, *J. Chem. Phys.*, 39, 1532 (1963). A bridging hydrogen was substituted for a bridging NH₂ group, in analogy with the relationship between B₂H₆ and NH₂B₂H₅ as described in this reference.
- (11) B₉H₁₅, R. E. Dickerson, P. J. Wheatley, P. A. Howell, and W. N. Lip-scomb, *J. Chem. Phys.*, 27, 200 (1955).
- (12) B₉H₁₄⁻, N. N. Greenwood, J. A. McGinnety, and J. D. Owen, *J. Chem. Soc., Dalton Trans.*, 986 (1972).
- (13) B10H142-, D. S. Kendall and W. N. Lipscomb, Inorg. Chem., 12, 546 (1973).

- (1973).
 (14) B₁₀H₁₃⁻⁻, R. Schaeffer, private communication.
 (15) B₁₁H₁₃²⁻, C. F. Fritchle, *Inorg. Chem.*, 6, 1199 (1967).
 (16) D. Voet and W. N. Lipscomb, *Inorg. Chem.*, 6, 113 (1967).
 (17) M. R. Churchili and B. G. DeBoer, J. Am. Chem. Soc., 96, 6310 (1974).
 (18) E. I. Toipin and W. N. Lipscomb, *Inorg. Chem.*, 12, 2257 (1973).
 (19) B₁₀H₁₄, A. Tippe and W. C. Hamilton, *Inorg. Chem.*, 8, 464 (1969).
 (20) T. A. Haigren, R. J. Anderson, D. S. Jones, and W. N. Lipscomb, *Chem.*
- Phys. Lett., 8, 547 (1971), and references therein. (21) Tables of molecular geometries are available from W.N.L.

- (22) J. H. Hall, Jr., D. S. Marynick, and W. N. Lipscomb, J. Am. Chem. Soc., 96, 770 (1974).
- (23) J. A. Pople and D. L. Beveridge, "Approximate Molecular Orbital Theo-ry", McGraw-Hill, New York, N.Y., 1970.
- (24) W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 51, 2657 (1969); W. J. Hehre, R. Ditchfield, R. F. Stewart, and J. A. Pople. ibid., 52, 2191 (1970).
- (25) (a) E. Switkes, R. M. Stevens, W. N. Lipscomb, and M. D. Newton, J. Chem. Phys., 51, 2085 (1969); (b) R. M. Stevens, *ibid.*, 52, 1397 (1970).
- (26) (a) E. A. Laws, R. M. Stevens, and W. N. Lipscomb, J. Am. Chem. Soc. 94, 4461 (1972); (b) D. S. Marynick and W. N. Lipscomb, ibid., 94, 8692
- (27) D. S. Marynick and W. N. Lipscomb, J. Am. Chem. Soc., 94, 8699 (1972)
- (28) W. N. Lipscomb, "Boron Hydrides", W. A. Benjamin, New York, N.Y., 1963.
- (29) D. A. Dixon, J. H. Hall, Jr., D. A. Kleier, T. A. Halgren, and W. N. Lipscomb, to be submitted. (30) R. N. Grimes, "Carboranes", Academic Press, New York, N.Y., 1970.
- (31) E. Switkes, W. N. Lipscomb, and M. D. Newton, J. Am. Chem. Soc., 92,
- 3847 (1970). (32) I. R. Epstein and W. N. Lipscomb, Inorg. Chem., 10, 1921 (1971).
- (33) Reference 28, p 59.
- (34) (a) J. Dobson and R. Schaeffer, Inorg. Chem., 7, 402 (1968); (b) R. Schaeffer, Second International Meeting on Boron Chemistry, Leeds, England, May 1974
- (35) T. A. Halgren, I. M. Pepperberg, and W. N. Lipscomb, J. Am. Chem. Soc., 97, 1248 (1975).
- (36) G. R. Eaton and W. N. Lipscomb, "NMR Studies of Boron Hydrides and Related Compounds", W. A. Benjamin, New York, N.Y., 1969, p 121.
- M. D. Newton, private communication.
 D. A. Dixon, D. A. Kleier, T. A. Halgren, and W. N. Lipscomb, J. Am. Chem. Soc., 96, 2293 (1974).
 F. E. Wang, P. G. Simpson, and W. N. Lipscomb, J. Chem. Phys., 35, Chem. Communication.
- 1335 (1961); J. Am. Chem. Soc., 83, 491 (1961).

Thermal Isomerization Studies of Small Metallocarboranes, Cage Rearrangement Equilibria and Reversible Cobalt Atom Migrations

Vernon R, Miller and Russell N, Grimes*

Contribution from the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901. Received August 2, 1974

Abstract: The vapor phase thermal behavior of six-, seven-, and eight-vertex monocobaltacarboranes, seven-, eight-, and nine-vertex dicobaltacarboranes, and a ten-vertex tricobaltacarborane was examined. In addition to phenomena of types previously observed in metallocarborane studies, e.g., intramolecular migration of metal and carbon atoms, and intermolecular transfer of cobalt and boron, several processes novel to metallocarborane chemistry were found, including the conversion of a neutral cobaltacarborane to a carborane via thermal ejection of cobalt, the migration of cobalt from a 5- to a 4-coordinate polyhedral vertex, and two examples of cage rearrangement equilibria involving reversible metal-metal cleavage. The isomerization of $1,7,2,3-(\eta-C_5H_5)_2Co_2C_2B_3H_5$ to the 1,7,2,4 species via the isolable 1,2,4,5 and 1,2,3,5 intermediates was examined, and a mechanism has been proposed for the sequence. The equilibrium constant for the reversible rearrangement of 1,7,5,6- to 1,8,5,6- $(\eta-C_5H_5)_2C_02C_2B_5H_7$ was determined as a function of temperature. The results obtained are discussed and evaluated in conjunction with previously reported work on the isomerization of large cobaltacarborane systems.

The rearrangement of polyhedral carboranes and metallocarboranes has received much attention from experimentalists and theoreticians.¹⁻⁶ Although the basic phenomenon involved-cooperative movement of atoms in the surface of a triangulated polyhedral cage—is almost unknown outside of boron chemistry, within this area it occurs with such facility and regularity that an understanding of it is a fundamental aspect of boron cage chemistry. Previous work on cage rearrangements has dealt with systems of large or intermediate size, especially those of icosahedral (12-vertex) geometry. The only reported small carborane rearrangement in the polyhedral $C_2B_{n-2}H_n$ series is that of octahedral 1,2- to 1,6-C₂B₄H₆.⁷ In the metallocarborane field,

Hawthorne et al. have examined the thermal isomerization of several monocobalt 9- to 13-vertex^{4,5} and dicobalt 10- to 12-vertex⁶ cages and noted several trends which we shall discuss later in this paper. Despite the isolation of many smaller metallocarboranes in recent years,8 their thermal rearrangements have not previously been investigated.

In the course of our work on small metallocarboranes and metalloboranes having as few as five cage atoms,⁹⁻¹¹ we have noted numerous instances of thermal isomerization and/or disproportionation and accordingly initiated detailed studies of several selected cobaltacarborane systems having one to three metal atoms. The results are, in part, in accord with expectations based on studies of larger sys-

Figure 1. Thermal rearrangement of $1,2,3-(\eta-C_5H_5)C_0C_2B_4H_6$ to $1,2,4-(\eta-C_5H_5)C_0C_2B_4H_6$.

tems,⁴⁻⁶ but in other respects differ significantly from earlier work and supply some new insights into the factors controlling cage rearrangement processes.

Results and Discussion

General Approach and Scope, All experiments were conducted in the vapor phase in sealed Pyrex tubes without solvent, utilizing electrically neutral, air-stable, crystalline η -cyclopentadienylcobaltacarboranes, all of which were originally prepared in our laboratory. The systems examined were monocobalt species of six, seven, and eight vertices, dicobalt cages of seven, eight, and nine vertices, and a tricobalt ten-vertex system.

Six-Vertex Cages, Pyrolysis of 1,2,4-(n-C5H5)CoC2B3H5, Three isomers are possible in a CoC₂B₃ octahedral system, only one of which, $1,2,4-(\eta-C_5H_5)C_0C_2B_3H_5$,¹⁰ contains nonadjacent framework carbon atoms. Since the higher thermal stability of carborane and metallocarborane isomers having nonadjacent carbons compared to those with adjacent carbons is well established, it was considered unlikely that $1,2,4-(\eta-C_5H_5)C_0C_2B_3H_5$ would isomerize to the unknown 1,2,3 or 1,2,6 systems, both of which would have adjacent carbons. Consequently, the thermolysis of $1,2,4-(\eta-C_5H_5)C_0C_2B_3H_5$ was expected to result in formation of di- and possibly tricobalt metallocarboranes, polymerization, and decomposition, rather than cage rearrangement. This was in fact observed, the predominant metallocarborane products of pyrolysis at 250° being CoC₂B₄, $Co_2C_2B_3$, and $Co_2C_2B_4$ cage systems. In addition to the expected thermal metal transfer¹² evidenced by the dicobalt products, boron transfer also occurred, giving 4-boron species. Spectroscopic evidence for monomethylated metallocarboranes was also obtained, the methyl groups presumably forming from decomposition of the original metallocarborane. The relatively low thermal stability of this octahedral cobaltacarborane, as compared with larger homologs, is indicated by the substantial degradation at 250°.

Seven-Vertex Monocobalt Cages, Rearrangement of 1,2,3- $(\eta$ -C₅H₅)CoC₂B₄H₆. The structure of 1,2,3- $(\eta$ -C₅H₅)CoC₂B₄H₆¹³ (Figure 1) has been confirmed in an X-ray diffraction study¹⁴ of the *C*,*C'*-dimethyl derivative. The parent compound exhibits high thermal stability, but at 400° isomerized almost quantitatively to 1,2,4- $(\eta$ -C₅H₅)CoC₂B₄H₆, a species previously obtained¹⁵ in the sodium naphthalide-metal ion treatment of 2,4-C₂B₅H₇. Although traces of 1,7,2,4- $(\eta$ -C₅H₅)₂Co₂C₂B₃H₅ were produced, no other monocobalt isomers were found. Analogous results were obtained in the pyrolysis of the *C*-methyl derivative, 2-CH₃-1,2,3- $(\eta$ -C₅H₅)CoC₂B₄H₅. Since the 1,2,3 and 1,2,4 isomers are the only possible pentagonal bipyramidal CoC₂B₄ systems having the metal in an apical (fivecoordinate) vertex and both cage carbons in equatorial

Figure 2. The principal rearrangement sequence for $(\eta - C_5H_5)_2Co_2C_2B_3H_5$ isomers.

(four-coordinate) vertices, these findings are in conformity with previous observations⁵ that (1) framework carbon atoms tend to favor low-coordinate vertices, (2) cobalt atoms prefer high-coordinate positions, and (3) the carbon atoms tend to separate from one another. It should be emphasized that these empirical rules describe trends and do not prohibit structures containing high-coordinate carbon and/or low-coordinate metal atoms; indeed, the isolation of several such species as stable compounds is described elsewhere in this paper.

Seven-Vertex Dicobalt Cages, Rearrangement of 1,7,2,3- $(\eta-C_5H_5)_2Co_2C_2B_3H_5$, X-Ray studies of their C-methyl derivatives have established the structures of 1.7.2.3-(n- $C_5H_5)_2C_02C_2B_3H_5^{16a}$ and its 1,7,2,4 isomer^{16b} (Figure 2). which we have described^{13,16a} as triple-decked metallocene analogs since the central ring in each case is formally $C_2B_3H_5^{4-}$, isoelectronic with $C_5H_5^{-}$. Pyrolysis of the 1,7,2,3 parent compound or the C-methyl-substituted species above 300° yields respectively 1,7,2,4-(η - $C_5H_5)_2C_02C_2B_3H_5$ or its C-methyl derivative. Since this conversion in net effect results in the separation of the cage carbons while leaving the cobalt and carbon atoms in their favored five-coordinate and four-coordinate polyhedral vertices, respectively, it is in accord with the empirical rules outlined earlier. The 1,7,2,4 isomer (previously obtained¹³ from the reduction of $1,6-C_2B_4H_6$ with sodium naphthalide followed by treatment with $CoCl_2$ and NaC_5H_5) does not undergo further rearrangement below its decomposition temperature ($\sim 400^{\circ}$).

In order to gain further insight into this isomerization, the rearrangement of $1,7,2,3-(\eta-C_5H_5)_2Co_2C_2B_3H_5$ was conducted at 200-250°, a temperature range barely sufficient to effect slow conversion. Under these relatively mild conditions, two additional $(\eta-C_5H_5)_2Co_2C_2B_3H_5$ species were isolated as intermediates, and a close examination of the thermal behavior of these individual species established that the main route is that shown in Figure 2 (evidence that other pathways may also be operative to a minor extent is given in the Experimental Section). As the diagram indicates, the $1,7,2,3 \rightarrow 1,2,4,5$ conversion is slightly reversible (the implications of this are discussed later in connection with the $(\eta-C_5H_5)_2Co_2C_2B_5H_7$ system).

The structure of the previously reported¹⁰ 1,2,3,5 isomer was deduced from ¹H and ¹¹B NMR spectra and other considerations such as the method of preparation. The NMR spectra of the new 1,2,4,5 isomer, given in the Experimental Section, indicate the presence of a mirror plane which generates equivalent cage CH groups and a pair of equivalent BH units; the $(\eta$ -C₅H₅)Co moieties are nonequivalent and hence lie on the mirror plane, as does the unique boron. Two possible structures, 1,2,3,6 and 1,2,4,5, have the re-

4215

quired symmetry, but the 1,2,4,5 geometry is strongly indicated on the grounds that the very low-field¹⁷ ¹¹B NMR signal of area 2 correlates with low-coordinate boron atoms^{15,18} adjacent to both cobalts; this effect is particularly evident in comparison with the ¹¹B spectrum of the 1,2,3,5 isomer, a uniquely defined structure¹⁹ which contains only one such boron atom. A further indication of the 1,2,4,5 geometry is the reversibility of the 1,7,2,3 \rightarrow 1,2,4,5 conversion, which strongly suggests that the cage carbons remain adjacent in the new isomer.

The isolation of the 1,2,4,5 and 1,2,3,5 species as stable intermediates is particularly interesting, since their formation from the 1,7,2,3 isomer requires the migration of cobalt from a "favored" five-coordinate vertex to a supposedly unfavorable four-coordinate equatorial vertex. There is little doubt that the placement of cobalt in a low-coordinate vertex is normally energetically unfavorable (for example, as discussed above, no such monocobalt (nwas C_5H_5)CoC₂B₄H₆ species has been detected). Clearly, this tendency is offset in 1,2,4,5and $1,2,3,5-(\eta C_5H_5$)₂Co₂C₂B₃H₅ by other factors which not only permit one cobalt to occupy an equatorial vertex but also allow an apical-equatorial migration. We have suggested in an earllier paper¹⁰ that the 1,2,3,5 isomer and its iron analog, $1,2,3,5-(CO)_6Fe_2C_2B_3H_5$ (both of which were produced in the gas-phase polyhedral expansion of 1,5-C₂B₃H₅) are stabilized by the direct metal-metal interactions in these systems. This proposal is supported by the present studies of the $(\eta$ -C₅H₅)₂Co₂C₂B₃H₅ rearrangement, and further evidence of the importance of cobalt-cobalt bonding as a determinant of thermal stability is given by the $(\eta$ - $C_5H_5)_2Co_2C_2B_5H_7$ system described later in this paper.

Although detailed kinetic studies have not been undertaken, the sequence outlined in Figure 2 allows some deductions about the mechanism by which these interconversions take place. Perhaps the simplest a priori possibility is the diamond-square-diamond, or dsd, rearrangement proposed by Lipscomb¹ for the isomerization of triangulated boron polyhedra. In this mechanism, a diamond-shaped array of atoms (two adjacent triangles) is stretched along the short diagonal to give a square, which is then compressed along the other diagonal to form a new diamond array. Application of the dsd mechanism to $1,7,2,3-(\eta-C_5H_5)_2Co_2C_2B_3H_5$ does not give a particularly satisfactory accounting of the observed rearrangement. While successive dsd operations are capable of interconverting the four species in Figure 2 (and indeed can, in principle, produce all geometrically possible isomers¹), a dsd pathway in this system entails several objections: (1) it can account for the observed sequence only if several additional, but unknown, intermediate isomers are postulated, i.e., none of the three transformations shown can occur directly in a single dsd cycle; (2) intermediates having unfavorable features, such as apex (five-coordinate) carbons, two equatorial metals, or both, are required; and (3) the sequence in Figure 2 is much more selective than expected for a simple dsd mechanism, which might be expected to produce additional transformations beyond those actually observed.

These objections do not, in themselves, rule out a simple dsd mechanism but they do render it less attractive. A more appealing pathway involves the rotation of triangular groups on the polyhedral surface, a mechanism originally proposed by Muetterties and Knoth² for icosahedral cage rearrangements. It seems to us significant that each conversion in Figure 2 can occur via a single triangle rotation; for example, a one-third rotation of triangle Co(7)-B(4)-B(5)in the starting material yields the 1,2,4,5 species, rotation of a B₂C triangle in the 1,2,4,5 isomer can produce the 1,2,3,5, and rotation of a CoB_2 triangle in the latter compound yields the 1,7,2,4 final product. In contrast to the dsd route, none of these conversions requires more than one step.20 Moreover, the observed sequence can be accounted for in terms of a rotating triangle mechanism if several restrictions are applied: (1) carbon may not move from an equatorial into an apex (high-coordinate) position; (2) carbon atoms once separated cannot return to adjacent vertices: (3) rotation of B_2C or B_2Co triangles is preferred; (4) cobalt will tend to adopt an apex location, provided rules 1-3 are followed. The rotating triangle mechanism with these constraints is in agreement with our results, and in fact uniquely yields the observed sequence with one exception: the original 1,7,2,3 isomer, under the proposed rules, could yield the 1,2,3,4 and 1,2,3,6 isomers, which have not been observed. However, if either species were formed, under the above rules it could convert only to the known 1,2,3,5 or 1,2,4,5 species; if this were to take place rapidly, such an intermediate might well not be detected.

The proposed restrictions (1), (2), and (4) are closely related to empirical rules set forth by Hawthorne et al.⁵ for the rearrangement of monocobalt metallocarboranes of six to ten boron atoms. However, while these workers also suggested that cobalt would not migrate from a high- to a low-coordinate vertex, such movement obviously does occur in the present system. An additional trend noted by the Hawthorne group, the tendency of cobalt and carbon to separate, seems at best weak in the $(\eta$ -C₅H₅)₂Co₂C₂B₃H₅ rearrangements since the number of Co-C links in the four isomers is four, two, three and four, respectively. We emphasize that the Hawthorne proposals were limited to systems of six to ten boron atoms and thus no discrepancy with our observations is indicated; the differences however, are interesting and will be further discussed below.

With respect to the proposed rotating triangle rearrangement mechanism, it may be noted that calculations based on triangle rotations in a cuboctahedral intermediate have been applied with some success to the isomerization of halogenated 1,2- and $1,7-C_2B_{10}H_{12}$ derivatives,^{21,22} in contrast to the dsd mechanism which cannot in itself account for the observed product distributions.

Irrespective of the detailed mechanism, the observed sequence of the $(\eta$ -C₅H₅)₂Co₂C₂B₃H₅ rearrangement is readily explained. The principal driving force is the separation of cage carbon atoms, which converts the 1,7,2,3 to the 1,7,2,4 isomer. However, the 1,7,2,3 \rightarrow 1,7,2,4 250° conversion may not occur except via intermediates in which one cobalt occupies an equatorial vertex. The activation energy for the migration of cobalt to an equatorial location, as in the 1,2,4,5 isomer, is lowered by the stabilizing effect of cobalt-cobalt bonding. Thus, the existence of the 1,2,4,5 species in equilibrium with the 1,7,2,3 compound at elevated temperature provides a ready pathway to the 1,7,2,4 species.

Eight-Vertex Monocobalt Cages. Disproportionation of 3,1,7-(\eta-C₅H₅)CoC₂B₅H₇. The (\eta-C₅H₅)CoC₂B₅H₇ system is known in only one isomeric form, with no evidence of any other isomers having been detected in any experiments. The 3,1,7 isomer was originally obtained in low yield in the polyhedral expansion of 2,4-C₂B₅H₇ with sodium in tetrahydrofuran,¹⁵ but a much better synthesis is the reaction of (\eta-C₅H₅)Co(CO)₂ with C₂B₅H₇ in the vapor phase.¹⁰ The structure of 3,1,7-(\eta-C₅H₅)CoC₂B₅H₇ (Figure 3a) has not been confirmed in an X-ray study, but a unique assignment¹⁵ can be made from the ¹¹B and ¹H NMR spectra provided that (1) cobalt is assumed to occupy a five-coordinate vertex in the dodecahedral framework, and (2) one accepts the previously invoked correlation^{15,18} between very

Figure 3, Proposed structures of eight-vertex cobaltacarboranes: (a) $3,1,7-(\eta-C_5H_5)CoC_2B_5H_7$, (b) $3,5,1,7-(\eta-C_5H_5)_2Co_2C_2B_4H_6$.

low field ¹¹B NMR signals and boron atoms occupying four-coordinate vertices adjacent to cobalt. The spectra reveal that the molecule is totally asymmetric, and the ¹¹B resonance at δ -56.5 ppm (relative to BF₃ etherate) is assigned to a four-coordinate BH group adjacent to the metal atom; thus the other two four-coordinate members linked to the metal must be nonequivalent CH groups, and the structure is 3,1,7-(η -C₅H₅)CoC₂B₅H₇. Disregarding enantiomers, no other gross geometry is possible based on a dodecahedral eight-vertex cage and consistent with the above assumptions.

The compound is thermally stable below 250°; at 340° it undergoes disproportionation in which a $(\eta$ -C₅H₅)Co moiety is transferred from one substrate molecule to another, releasing the carborane 2,4-C₂B₅H₇ and forming a pair of dicobalt $(\eta$ -C₅H₅)₂Co₂C₂B₅H₇ isomers (discussed below), plus traces of tricobalt species and some solid residue. Although the intermolecular thermal transfer of cobalt from $(\eta$ -C₅H₅)CoC₂B₈H₁₀ to yield several dicobalt species has been reported,¹² to our knowledge the isolation of a carborane from the disproportionation of a neutral metallocarborane is novel.

The absence of any evidence for other isomers of $(\eta$ - C_5H_5)CoC₂B₅H₇ (or its isostructural analog²³ 3,1,7- $(CO)_3FeC_2B_5H_7$) is significant, since previous work on monocobalt metallocarboranes of 9-12 vertices suggested that cobalt and carbon atoms tend to separate.⁵ Application of this principle (rule d in ref 5), with the restrictions given,⁵ suggests that $3,1,7-(\eta-C_5H_5)C_0C_2B_5H_7$ should rearrange to the 3,1,8 isomer, thereby severing one of the cobalt-carbon links. The fact that no such rearrangement occurs even at high temperatures means that either this metallocarborane does not exhibit the drive for cobalt-carbon separation which has been observed in larger cobaltacarboranes, or else the structure is actually $3,1,8-(\eta-1)$ C_5H_5)CoC₂B₅H₇; if the latter were true, the failure to rearrange would be explainable on the basis that the carboncarbon and carbon-cobalt distances were already maximized and no driving force for isomerization would exist. While not absolutely ruling out the possibility that the compound is the 3,1,8 isomer, we feel that this is improbable since the presence of two four-coordinate BH groups adjacent to cobalt would be expected to produce two very low

field ¹¹B NMR resonances (vide supra) instead of the unique signal actually observed. Thus, it appears that $3,1,7-(\eta-C_5H_5)CoC_2B_5H_7$ does not exhibit a tendency for separation of carbon from cobalt. Further discussion of this finding appears in the concluding section.

Eight-Vertex Dicobalt Cages, Pyrolysis of $3,5,1,7-(\eta-1)$ $C_5H_5)_2Co_2C_2B_4H_6$, As is the case with the monocobalt eight-atom system discussed in the previous section, only one dicobalt eight-vertex isomer has been isolated.^{10,15} The proposed structure (Figure 3b)¹⁵ based primarily on ¹¹B and ¹H NMR spectra, contains metal atoms at vertices 3 and 5 and carbons at 1 and 7. This geometry is consistent with the symmetry requirements imposed by the NMR data¹⁵ and contains equivalent four-coordinate BH groups, each adjacent to one cobalt atom. The alternative 3,5,2,8 structure (inadvertently overlooked in our earlier report¹⁵) also satisfies the data, except that such a molecule would have low-coordinate borons adjacent to two cobalts, which would be expected to produce ¹¹B NMR signals at extremely low field; 10,15 the actual resonance at -56 ppm is nearly identical with that observed for the monocobalt species (η - C_5H_5)CoC₂B₅H₇, and hence favors the 3,5,1,7 geometry in which each low-coordinate boron is adjacent to only one cobalt atom.

The pyrolysis of $3,5,1,7-(\eta-C_5H_5)_2Co_2C_2B_4H_6$ at 340° gave results similar to that of the monocobalt eight-vertex system, in that no rearrangement to other isomers was observed. Considerable boron and cobalt transfer took place, evidenced by the formation of $C_0C_2B_4$, $C_02C_2B_5$, $C_02C_2B_4$, $Co_2C_2B_6$, and $Co_3C_2B_5$ cages. In addition, a new compound whose mass spectrum corresponded to (η- C_5H_5)₃Co₃C₂B₄H₆ was isolated in a quantity too small for further characterization. The fact that rearrangement to the unknown $3,5,2,8-(\eta-C_5H_5)_2Co_2C_2B_4H_6$, which would have reduced the number of direct Co-C links from four to two, did not occur parallels the thermal behavior of 3,1,7- $(\eta$ -C₅H₅)CoC₂B₅H₇. As in the latter case, we interpret the absence of isomerization to mean that no isomer of higher thermal stability exists; however, the possibility that kinetic factors (e.g., the lack of a suitable pathway) are responsible cannot be altogether excluded.

Nine-Vertex Dicobalt Cages, Reversible Rearrangement $(\eta$ -C₅H₅)₂Co₂C₂B₅H₇ Isomers, Two $(\eta$ -C₅H₅)₂of Co₂C₂B₅H₇ species are known: the red 1,8,5,6 isomer was obtained in the polyhedral expansion of 2,4-C₂B₅H₇ via sodium naphthalide reduction,¹⁵ and the 1,8,5,6 and green 1,7,5,6 species were both produced in the vapor phase reaction of 2,4-C₂B₅H₇ with $(\eta$ -C₅H₅)Co(CO)₂.¹⁰ For convenience we shall refer to the 1,8,5,6 and 1,7,5,6 compounds as isomer A and isomer B, respectively. The proposed structures,^{23a} shown in Figure 4, are based on ¹¹B NMR, ¹H NMR, infrared, electronic, and mass spectra. Since the cobalt atoms in B are adjacent while those in A are not, it was assumed that a rearrangement of B to A would occur at elevated temperature. While isomerization of B was indeed observed, it was unexpectedly found that the conversion is not quantitative and that an equilibrium is established between A and B (Figure 4). The equilibrium constant $K_{eq} =$ [B]/[A] was measured as 1.00 ± 0.05 at 340°, in separate experiments starting with pure samples of B and A, respectively. Determination of K_{eq} at several temperatures from 240 to 340° gave an extrapolated value of $K_{eq} = 6 \pm 1$ at 25°. The calculated value of ΔH for the A \rightarrow B rearrangement is -2 ± 1 kcal, so that the rearrangement involving migration of the cobalt atoms toward each other is slightly, but clearly, exothermic. Thus, the isomer with adjacent cobalts, B, is more stable at room temperature than at higher temperatures, with respect to conversion to A.

This rearrangement is the first known example of a mea-

Figure 4, Reversible rearrangement of $1,7,5,6-(\eta-C_5H_5)_2Co_2C_2B_5H_7$ (left) and $1,8,5,6-(\eta-C_5H_5)_2Co_2C_2B_5H_7$ (right). Cyclopentadienyl rings are omitted from the drawings.

surable equilibrium between closo-metallocarborane isomers. In all previously reported thermal isomerizations, the conversions were stated or implied to be irreversible; in most cases, in fact, we believe that the observed metallocarborane conversions do occur essentially quantitatively and that measurable equilibria such as that involving A and B may be comparatively rare. However, these observations suggest that the factors controlling the relative stabilities of metalloboron cage isomers may be more complex than formerly thought, particularly in systems containing more than one metal atom. Clearly, in isomers A and B there are forces operating in opposite directions, which are in a delicate state of balance. While the data needed for a sophisticated discussion are not available, a tentative suggestion is that the direct cobalt-cobalt interaction in B tends to be stabilized electronically, possibly by a bond order higher than the average bond order for adjacent framework atoms in the molecule; on the other hand, steric crowding of the cyclopentadienyl groups in B would tend to provide a driving force for separation of the metals. Such a steric factor would be more important at higher temperatures, in which thermal motion of the C₅H₅ rings is greater. These suggestions are in accord with the observed decrease in the relative concentration of isomer B with increasing temperature.

An indication that equilibria involving reversible metalmetal cleavage in metallocarboranes are not restricted to $(\eta$ -C₅H₅)₂Co₂C₂B₅H₇ is given by the $(\eta$ -C₅H₅)₂Co₂-C₂B₃H₅ system discussed above. Although a value of K_{eq} has not been determined, the conversion of the 1,7,2,3 to the 1,2,4,5 isomer is clearly reversible since pyrolysis of the latter species generates a small (~10%) yield of the 1,7,2,3 isomer (the major product, as described earlier, is the 1,2,3,5 system). In this instance the reversible cobalt migration is even more remarkable than in the $(\eta$ -C₅H₅)₂Co₂C₂B₅H₇ system, since it involves movement between four- and five-coordinate vertices on the seven-atom polyhedral cage.

Ten-Vertex Tricobalt Cages, Rearrangement of $2,3,8,1,6-(\eta-C_5H_5)_3Co_3C_2B_5H_7$, The tricobalt isomers 2,3,8,1,6- and 2,3,4,1,10- $(\eta$ -C₅H₅)₃Co₃C₂B₅H₇ (Figure 5) were obtained in the reaction of $(\eta - C_5H_5)Co(CO)_2$ with 2,4-C₂B₅H₇ in the vapor phase¹⁰ and were structurally characterized from NMR, infrared, and mass spectra with particular reliance on the detailed fine structure of the C-H proton signals in the 100-MHz ¹H NMR spectra. While X-ray confirmation is still pending, the structural assignments based on NMR arguments¹⁰ are reasonably certain. The pyrolysis of the 2,3,8,1,6 isomer at 300° resulted primarily in loss of cobalt from the cage, giving an approximately equimolar mixture of 1,8,5,6- and 1,7,5,6- $(\eta$ - $C_5H_5)_2Co_2C_2B_5H_7$; since the equilibrium constant for interconversion of the latter species under these conditions is near unity (see previous section), the composition of this product mixture gives no information on the nature of the dicobalt isomer initially formed in the pyrolysis. In addition to the dicobalt species, a trace of the 2,3,4,1,10 tricobalt

Figure 5. Proposed structures of $2,3,8,1,6-(\eta-C_5H_5)_3Co_3C_2B_5H_7$ (a) and $2,3,4,1,10-(\eta-C_5H_5)_3Co_3C_2B_5H_7$ (b). One cyclopentadienyl ring has been omitted from each drawing.

isomer was also obtained. The rearrangement is in the direction expected; the number of Co-C bonds decreases, and the movement of the five-coordinate CH group to a fourcoordinate vertex is in accord with other metallocarborane rearrangements as discussed above. It should also be noted that the conversion of 2,3,8,1,6 to the 2,3,4,1,10 isomer increases the number of direct Co-Co bonds, indicating once again that the formation of metal-metal links is not thermally inhibited and may in certain circumstances be a positive stabilizing factor.

The thermal stabilities of the two tricobalt isomers provide an interesting comparison with the icosahedral tricobalt system $2,3,5,1,7-(\eta-C_5H_5)_3Co_3C_2B_7H_9$,²⁴ the only other previously reported metallocarborane having more than two metal atoms. The latter compound is unstable in solution at room temperature, decomposing to a dicobalt species over a period of days;²⁴ in contrast, the $(\eta$ -C₅H₅)₃Co₃C₂B₅H₇ species are unchanged in or out of solution at 25°, and temperatures above 250° are required to effect degradation of either compound at a significant rate. It is conceivable that the higher cobalt-boron ratio in the smaller systems contributes to their stability, a suggestion which is possibly related to the well-known cohesion of metal cluster systems such as RCCo₃(CO)₉ and $(C_2H_5)_2C_2C_0(CO)_{10}$ toward thermal and oxidative degradation.

Conclusions

The principal findings with respect to the thermal behavior of the cobaltacarboranes studied are given in Table 1. It is clear from the foregoing discussion that detailed evaluation of the results requires, for most purposes, consideration of each system individually. However, some general tendencies may be noted. In most cases, particularly those in

Table I.Summary of Major Processes inCobaltacarborane Pyrolyses

Cage system	No. of vertices	Intramolecular rearrangements obsd	Groups involved in intermolecular transfer
CoC,B,	6	None	(C,H,)Co, BH
CoCB	7	$1,2,3 \rightarrow 1,2,4$	(C.H.)Co. BH
CoC,B	8	None	(C,H,)Co
$\operatorname{Co}_2 \widetilde{\operatorname{C}}_2 \widetilde{\operatorname{B}}_3$	7	$1,7,2,3 \rightleftarrows 1,2,4,5 \rightarrow 1,2,3,5 \rightarrow 1,7,2,4$	None detected
Co ₂ C ₂ B ₄	8	None	(C,H,)Co, BH
Co ₂ C ₂ B ₂	9	1,7,5,6 ≈ 1,8,5,6	(C,H,)Co
$Co_3C_2B_s$	10	$2,3,8,1,6 \rightarrow 2,3,4,1,10^{\circ}$	$(C_{5}H_{5})Co$
a Trace.			

which the original compound is not expected to be the most stable isomer, a mechanism exists which allows its rearrangement to the more stable form. Usually, this occurs at a temperature too low to permit extensive decomposition. When the temperature is raised to the point at which degradation occurs, the transfer of cobalt and occasionally boron is observed, except in the remarkable case of $1,7,2,4-(\eta-C_5H_5)_2Co_2C_2B_3H_5$ for which we could find no evidence of such an effect. The high temperatures required for degradation and thermal transfer in most of these compounds attest to their generally high thermal stability which is comparable to that of their larger cobaltacarborane homologs.⁴⁻⁶

Some useful comparisons may be made with the empirical rules cited by Hawthorne et al.⁵ for the thermal rearrangements of cobaltacarboranes having six to ten boron atoms (rules a, b, and c had been noted earlier in studies of carboranes and metallocarboranes): (a) the cobalt atom will migrate to the highest-coordinate vertex and remain there; (b) the carbon atoms will not decrease their mutual separation; (c) the carbons will migrate irreversibly to the lowestcoordinate vertices; and (d) the carbons will tend to migrate away from the cobalt provided rules b and c are adhered to. In our work involving systems of three to five boron atoms and one to three cobalts, these trends are generally followed where applicable, with some notable exceptions. Thus, rule a is violated in the rearrangement of $1.7.2.3-(\eta$ - $C_5H_5)_2C_02C_2B_3H_5$ to the 1,2,4,5, 1,2,3,5, and 1,7,2,4 isomers, in which cobalt moves from a five- to a four-coordinate location and then returns to a five-coordinate position. Rules b and c are followed in all instances insofar as isolable species are concerned; this is as expected since the drive of carbon atoms to separate from each other and to prefer low-coordinate vertices is firmly established in carborane as well as metallocarborane chemistry. Rule d is difficult to evaluate in the small cages, since the separation of carbon from cobalt atoms is in many cases hindered by the compact geometry and by the constraints of rules a-c. However, in the isomerization of the $(\eta - C_5H_5)_2Co_2C_2B_3H_5$ system this effect does not appear significant, and in the pyrolysis of the $(\eta$ -C₅H₅)CoC₂B₅H₇ and $(\eta$ -C₅H₅)₂Co₂C₂B₄H₆ cages, where migration of carbon away from cobalt might be expected, it is not observed. We are inclined to view rule d as a marginal effect which is easily overridden in smaller cages by other structural or thermodynamic factors. In the larger systems for which it was proposed,⁵ the cobalt-carbon separation tendency does, however, seem to play a significant role.

Aside from the comparisons with larger cages, this study produced two kinds of thermal behavior not previously noted in metallocarborane chemistry: elimination of a metal from a neutral monometallocarborane to generate a carborane, and two cases of rearrangement equilibria between metallocarborane isomers entailing reversible metal-metal bond cleavage. The metal ejection, which occurred with $3,1,7-(\eta-C_5H_5)CoC_2B_5H_7$, can be accounted for in terms of the particularly high stability of the carborane product, $C_2B_5H_7$, which permits it to survive the $\sim 300^\circ$ temperatures required for disproportionation. The implications of isomerization equilibria in dimetallocarboranes have been discussed earlier in this paper, but we reiterate the prediction that this type of phenomenon will be encountered in other reactions as metallocarborane chemistry develops.

The cumulative import of all studies thus far on the cobaltacarboranes would seem to be that the factors governing the chemistry and cage rearrangements in the various systems are of sufficient complexity and subtlety that few generalizations can be expected to hold for the entire family. This is especially obvious in the observed equilibrium between 1,8,5,6- and $1,7,5,6-(\eta-C_5H_5)_2Co_2C_2B_5H_7$, where factors operating in opposite directions with respect to cobalt-cobalt bonding are evident, and rules designed to predict the "most stable" isomer can be formulated only as a function of temperature. The situation is reminiscent of the $C_2B_{n-2}H_n$ polyhedral carborane series, the smaller members of which exhibit a chemistry notably different from their larger homologs.³ In the metallocarboranes, the higher metal/boron ratio in the smaller cages is an additional factor likely to affect the chemistry, as in the higher stability of the 10-vertex vs. the 12-vertex tricobalt species mentioned earlier.

Finally, we wish to point out that observations regarding relative thermal stabilities of metallocarborane isomers are not necessarily relevant to the identification of new species obtained under mild conditions. For example, in the synthesis of metallocarboranes via reductive cage opening in solution followed by metal ion insertion¹⁸ (polyhedral expansion), a procedure normally conducted at room temperature or below, the geometry of the metallocarborane products must be largely influenced by the manner in which the original carborane cage opens; indeed, many species prepared via this route^{15,18} do not reflect at all the thermal isomerization trends discussed above. Consequently, the patterns of metal or carbon atom migrations in polyhedra at high temperatures cannot be used as structural arguments in assigning the geometry of metallocarboranes formed under low-energy conditions.

Experimental Section

Materials. The cobaltacarboranes used in this study were prepared as described in recent papers.^{10,13,15} Thin layer and preparative layer chromatography of product mixtures were conducted on precoated plates of silica gel F-254 purchased from Brinckmann Instruments, Inc. Solvents were reagent grade and used as received.

Spectra, Boron-11 NMR spectra at 32.1 MHz and proton NMR spectra at 100 MHz were obtained either on a Varian HA-100 spectrometer or a JEOL PS-100P pulse Fourier transform instrument. Mass spectra were recorded on a Hitachi Perkin-Elmer RMU-6E spectrometer, infrared spectra were obtained on a Beckman IR-8 instrument, and electronic spectra were obtained on a Cary 14 spectrophotometer.

General Procedure, Reactions were conducted in evacuated, sealed Pyrex bulbs that had been dried by flaming or evacuating overnight at 10^{-6} Torr. The bulbs were of sufficient volume to maintain samples entirely in the vapor phase at the reaction temperature. In most cases, the progress of the reaction was followed visually by observing the vapor and condensed phases. After cooling, the bulbs were reattached to the vacuum line and checked for noncondensables and other materials volatile at room temperature. Except where noted, no significant amounts of room temperature volatile species or insoluble residues were formed. The bulbs were filled with N₂ and the solution extracted with CH₂Cl₂ and filtered in air. The solutions were separated to give metallocarborane product mixtures which were separated by preparative layer chromatography (PLC). Known compounds were identified from their thin layer chromatographic (TLC) behavior, color, and/or in-

frared or mass spectra. All new compounds reported herein were characterized from ¹¹B and ¹H NMR, uv-visible, infrared, and mass spectra. Identification of even trace quantities of known products was conveniently facilitated by spotting the product together with a known sample on the same TLC plate and developing simultaneously. The colors and representative R_f values are as follows (Cp = η -C₅H₅). Samples developed in hexanes: 1,2,3-CpCoC₂B₄H₆, 0.10, yellow-orange; 1,2,4-CpCoC₂B₄H₆, 0.36, yel-3,5,1,7-Cp₂Co₂C₂B₄H₆, 0.27, brown; 2-CH₃-1,2,3low: CpCoC₂B₄H₅, 0.15, yellow-orange; 2-CH₃-1,2,4-CpCoC₂B₄H₅, 0.43, yellow; 1,2,4-CpCoC₂B₃H₅, 0.74, red. Developed in 50% benzene in hexanes: 1,7,2,3-Cp₂Co₂C₂B₃H₅, 0.21, red-brown; 1,2,4,5- $Cp_2Co_2C_2B_3H_5$, 0.67, green with bluish tinge; 1,2,3,5-Cp₂Co₂C₂B₃H₅, 0.70, green with yellowish tinge; 1,7,2,4-Cp₂Co₂C₂B₃H₅, 0.46, brownish green. Developed in 35% benzene in hexanes: 3,1,7-CpCoC₂B₅H₇, 0.91, red; 1,8,5,6-Cp₂Co₂C₂B₅H₇, 0.81, red; 1,7,5,6-Cp₂Co₂C₂B₅H₇, 0.66, green; 2,3,8,1,6-Cp₃Co₃C₂B₅H₇, 0.48, brown; 2,3,4,1,10-Cp₃Co₃C₂B₅H₇, 0.25, violet-brown.

Pyrolysis of 1,2,4- $(\eta$ -C₅H₅)CoC₂B₃H₅. A 4.0-mg (0.022 mmol) sample of 1,2,4- $(\eta$ -C₅H₅)CoC₂B₃H₅ was heated at 150, 200, and finally 250° for 18 hr to give 0.022 mmol of noncondensables, a dark insoluble residue, and 0.6 mg of metallocarboranes. TLC analysis indicated that the major component was starting material with at least six other compounds present. The mass spectrum of the mixture contained peaks corresponding to C₅H₅CoC₂B₄H₆, (C₅H₅)₂Co₂C₂B₃H₅, and (C₅H₅)₂Co₂C₂B₄H₆ and their monomethyl derivatives, as well as starting material.

Pyrolysis of 1,2,3-(η -C₅H₅)CoC₂B₄H₆. A 21.7-mg (0.109 mmol) sample of 1,2,3-(η -C₅H₅)CoC₂B₄H₆ was heated for 75 min at 400° to give 20.8 mg of product, identified as 1,2,4-(η -C₅H₅)CoC₂B₄H₆; only a trace of other material was indicated on TLC. In another experiment, 10.8 mg (0.055 mmol) of the compound was heated at 410° for 26 hr to give 0.050 mmol of noncondensables and 8.1 mg of metallocarboranes. PLC of the latter gave 6.3 mg of starting material and 0.3 mg of a mixture which was shown on mass spectroscopic analysis to contain (C₅H₅)2Co₂C₂B₃H₅, (C₅H₅CoC₂B₄H₅)₂, and unidentified species.

Pyrolysis of 2-CH₃-1,2,3-(η-C₅H₅)CoC₂B₄H₅. A 37.0-mg (0.174 mmol) sample of 2-CH₃-1,2,3- $(\eta$ -C₅H₅)CoC₂B₄H₅ was heated for 90 min at 400° to give 0.02 mmol of noncondensables, a slight brownish deposit, and 35.2 mg of metallocarboranes. The mass spectrum of this mixture indicated the presence of $CH_3(C_5H_5)C_0C_2B_4H_5$, $CH_3(C_5H_5)_2Co_2C_2B_3H_4$, and [CH₃(C₅H₅)CoC₂B₄H₄]₂. PLC separation afforded 32.7 mg (88% yield) of 2-CH₃-1,2,4- $(\eta$ -C₅H₅)CoC₂B₄H₅, characterized from the following data: ¹¹B NMR (CCl₄) doublets at δ -6.1 ppm rel to $BF_{3}O(C_{2}H_{5})_{2}$, J = 168 Hz, area 3, and -2.9, J = 159 Hz, area 1; ¹H NMR (CCl₄) singlets at δ -1.79 ppm rel to (CH₃)₄Si (CH₃ resonance), -3.70 (cage CH), -4.72 (C₅H₅), area ratio 3:1:5 approximately; ir (CCl₄ vs. CCl₄, cm⁻¹): 3940 w, 3120 w, 3055 w, 2955 m, 2920 m, 2860 m, 2565 vs, 1824 w, 1760 w, 1683 w, 1443 m, 1414 m, 1371 w, 1266 w, 1160 m, 1101 m, 1070 m, 1005 m, 956 w, 937 w, 890 w, 866 m, 828 s, 704 s, 668 w, 601 w; mass spectrum, intense parent group with B₄ pattern and cutoff at m/e 212, corresponding to the ${}^{12}C_{8}{}^{59}Co^{11}B_{4}{}^{1}H_{13}{}^{+}$ parent ion.

Pyrolysis of $1,7,2,3-(\eta-C_5H_5)_2Co_2C_2B_3H_5$, A 61.9-mg (0.200 mmol) sample of $1,7,2,3-(\eta-C_5H_5)_2Co_2C_2B_3H_5$ was heated for 70 min at 225° to give 61 mg of metallocarboranes. PLC separation gave 55.2 mg of starting material, 0.3 mg of $1, 2, 3, 5-(\eta C_5H_5)_2Co_2C_2B_3H_5$, 0.3 mg of 1,7,2,4- $(\eta$ -C₅H₅)₂Co₂C₂B₃H₅, and 1.1 mg of the new compound $1,2,4,5-(\eta-C_5H_5)_2Co_2C_2B_3H_5$. This species was characterized from the following data:²⁵ ¹¹B NMR (CDCl₃) doublets at $\delta - 44.7$, J = 151 Hz, area 2, and -11.4, J =149 Hz, area 1. ¹H NMR (CDCl₃) singlets at δ -5.16 (cage CH), area 2, -4.88 (C₅H₅), area 5, -4.56 (C₅H₅), area 5; ir (CH₂Cl₂ vs. CH₂Cl₂, cm⁻¹) 3940 w, 3100 w, 2520 vs, 1235 m, 1200 m, 1114 m, 1000 m, 942 w, 865 w, 827 w, 807 s, 620 w; uv-visible $(CH_3CN, \lambda_{max}, \mu m (\log \epsilon))$ 790 (2.08 (sh)), 590 (2.81), 425 (3.10 (sh)), 317 (4.00), 271 (4.22); mass spectrum, intense cutoff at m/e 310 corresponding to the ${}^{12}C_{12}{}^{59}C_{02}{}^{11}B_{3}{}^{1}H_{15}^{+}$ parent peak, and a B₃ pattern in the parent region. The mass spectra of the four known isomers of $(\eta - C_5H_5)_2Co_2C_2B_3H_5$ are nearly identical.

The uv-visible spectrum of $1,7,2,3-(\eta-C_5H_5)_2Co_2C_2B_3H_5$ has not previously been reported. In CH₃CN solution the bands are 776 (2.59), 525 (2.81 (sh)), 407 (3.50), and 314 (4.50). Spectra of the 1,7,2,4 and 1,2,3,5 isomers are given in ref 10.

Pyrolysis of $1,7,2,3-(\eta-C_5H_5)_2Co_2C_2B_3H_5$ for longer periods gave varying amounts of the 1,2,4,5, 1,2,3,5, and 1,7,2,4 isomers. Thus, in reactions of (a) 49.4 mg at 225 ° for 12 hr, (b) 44.6 mg at 200° for 12 hr, and (c) 17.2 mg at 200° for 142 hr, the following yields (mg) of the 1,7,2,3, 1,2,4,5, 1,2,3,5, and 1,7,2,4 isomers were obtained: experiment a, 36.2, 3.6, 5.5, and 0.7; experiment b, 40.1, 0,4, 0,2, 0.1; experiment c, 9.3, 0.8, 2.8, and 0.6.

Pyrolysis of 1,2,4,5- and 1,2,3,5-(\eta-C₅H₅)₂Co₂C₂B₃H₅. A sample of 1,2,4,5-(\eta-C₅H₅)₂Co₂C₂B₃H₅ (2.0 mg) was heated at 225° for 70 min to give 1.0 mg of starting material, 0.1 mg of the 1,7,2,3 isomer, and 0.3 mg of the 1,2,3,5 isomer. Pyrolysis of a 2.2-mg sample of 1,2,3,5-(\eta-C₅H₅)₂Co₂C₂B₃H₅ at 225° for 70 min gave 1.7 mg of the 1,2,3,5 and 0.1 mg of the 1,7,2,4 isomer. No other isomers were detectable by TLC or PLC in either case.

Pyrolysis of 1,7,2,4- $(\eta - \hat{C}_5H_5)_2Co_2C_2B_3H_5$, Except for slight material loss, the 1,7,2,4 isomer was unchanged on heating at 225° for 22 hr and at 340° for 16 hr. On heating at 400° for 3 hr, a sample of 6.3 mg gave 4.6 mg of metallocarborane products and a dark insoluble nonvolatile residue. PLC separation gave 0.2 mg of 1,2,3,5- $(\eta - C_5H_5)_2Co_2C_2B_3H_5$,²⁶ 3.0 mg of starting material, and bands of 0.3 and 0.2 mg whose mass spectra indicated the presence of a $[(C_5H_5)_2Co_2C_2B_3H_4]_2$ species and chlorinated derivatives of $(C_5H_5)_2Co_2C_2B_3H_5$, the latter probably originating from traces of CH₂Cl₂.

Pyrolysis of 2-CH₃-1,7,2,3-(\eta-C₅H₅)₂Co₂C₂B₃H₄. A 13.9-mg sample of 2-CH₃-1,7,2,3-(\eta-C₅H₅)₂Co₂C₂B₃H₄ was heated at 300° for 6 hr to give 0.3 mg of unidentified material (possibly the 1,2,3,5 isomer) and 10.4 mg (75% yield) of 2-CH₃-1,7,2,4-(\eta-C₅H₅)₂Co₂C₂B₃H₄. The spectroscopic data on this compound are as follows: ¹¹B NMR (CHCl₃) doublets at \delta -19.9, J = 121 Hz, area 2, and -12.8, J = 135 Hz, area 1; ¹¹H NMR (CDCl₃) singlets at \delta -1.97 (CH₃), -2.38 (cage CH), -4.43 (C₅H₅), area ratio 3: 1:10; ir (CH₂Cl₂ vs. CH₂Cl₂, cm⁻¹) 3015 w, 3010 w, 2910 m, 2855 m, 2500 vs, 1816 w, 1747 w, 1663 w, 1410 m, 1122 m, 1111 m, 1027 m, 1008 m, 946 m, 854 m, 832 m, 804 s, 793 s; mass spectrum, intense parent group with B₃ pattern and cutoff at at m/e 324, corresponding to the ¹²C₁₃⁵⁹Co₂¹¹B₃¹H₁₇⁺ parent ion.

Pyrolysis of 3,1,7-(η-C₅H₅)CoC₂B₅H₇. A 23-mg (0.110 mmol) sample of $3, 1, 7-(\eta-C_5H_5)CoC_2B_5H_7$ was pyrolyzed for 24 hr at 340° to give 0.039 mmol of noncondensables (Toepler pumped), 0.042 mmol of 2,4-C₂B₅H₇ (identified from its ir and mass spectra), 15.5 mg of metallocarboranes, and a dark insoluble residue. PLC separation of the metallocarborane mixture gave 1.0 mg of starting material, 4.1 mg of $1,8,5,6-(\eta-C_5H_5)_2Co_2C_2B_5H_7$, 4.0 mg of $1, 7, 5, 6 - (\eta - C_5H_5)_2 Co_2 C_2 B_5 H_7$, 3.9 mg of $2, 3, 8, 1, 6 - (\eta - 1)_2 Co_2 C_2 B_5 H_7$ mg of 2,3,4,1,10-(η- C_5H_5)₃ $Co_3C_2B_5H_7$, and 0.3 C_5H_5 ₃ $C_0C_2B_5H_7$. In an experiment under milder conditions designed to check for rearrangement isomers, a 5-mg (0.025 mmol) sample was heated at 150, 200, and 250° with no evidence of reaction, and finally at 300° for 22 hr to give volatiles containing 2,4- $C_2B_5H_7$, and a mixture of metallocarboranes. PLC separation of the latter gave 3.2 mg (0.015 mmol) of starting material, 0.2 mg of $1,8,5,6-(\eta-C_5H_5)_2Co_2C_2B_5H_7$, and 0.2 mg of $1,7,5,6-(\eta-C_5H_5)_2Co_2C_2B_5H_7$ $C_5H_5)_2Co_2C_2B_5H_7.$

A recently obtained ¹¹B NMR spectrum of $3,1,7-(\eta-C_5H_5)CoC_2B_5H_7$, recorded on a pulse Fourier transform instrument, is superior to that reported earlier¹⁵ (the compound was previously numbered 4,1,8) and exhibits doublets at $\delta - 56.6$ (J = 171 Hz), -13.0 (156), +1.6 (166), +10.4 (166), and +15.6 (164).

Pyrolysis of $3,5,1,7-(\eta-C_5H_5)_2Co_2C_2B_4H_6$. A sample of 7.8 mg (0.024 mmol) of 3,5,1,7- $(\eta$ -C₅H₅)₂Co₂C₂B₄H₆ was heated at 340° for 19 hr to give 0.027 mmol of noncondensables, 2.2 mg of 1,2,4- $(\eta$ -C₅H₅)CoC₂B₄H₆, 1.5 mg of starting material, 0.1 mg of a fraction whose mass spectrum contained peaks corresponding to $(C_5H_5)_2Co_2C_2B_6H_8$, and $(C_5H_5)_2Co_2C_2B_5H_7$, $[(C_{4}H_{4})-$ CoC₂B₄H₅]₂, 0.2 mg of a fraction whose mass spectrum correspond to $(C_5H_5)_3Co_3C_2B_4H_6$ (but could not be characterized due to insufficient sample), and 1.5 mg of a fraction whose mass spectrum exhibited peaks corresponding to (C5H5)2C02C2B3H5 and (C₅H₅)₃Co₃C₂B₅H₇. TLC analysis of the latter fraction in a slightly different solvent mixture identified it as a mixture of the known species¹⁰ $1,7,2,4-(C_5H_5)_2Co_2C_2B_3H_5$ and 2,3,8,1,6- $(C_5H_5)_3C_{03}C_2B_5H_7$

Pyrolysis of $(\eta$ -C₅H₅)₂Co₂C₂B₅H₇ **Isomers.** A 6-mg sample of 1,8,5,6- $(\eta$ -C₅H₅)₂Co₂C₂B₅H₇ was heated at 150, 200, 250, and fi-

nally at 300° for 6.5 hr to give 6.0 mg of metallocarboranes, which on PLC separation gave 2.7 mg of starting material, 2.7 mg of $1,7,5,6-(\eta-\dot{C}_5H_5)_2Co_2C_2B_5H_7$, and 0.3 mg of 2,3,8,1,6- $(C_5H_5)_3C_03C_2B_5H_7$. In a separate experiment, 2.7 mg of the 1,7,5,6 isomer was heated at 300° for 4 hr to give 2.3 mg of metallocarboranes, which on TLC analysis was shown to consist of equal amounts of the 1,7,5,6 and 1,8,5,6 isomers and a trace of 2,3,8,1,6- $(\eta$ -C₅H₅)₃Co₃C₂B₅H₇. Precise measurement of the mole ratio of 1,8,5,6- to 1,7,5,6- $(\eta$ -C₅H₅)₂Co₂C₂B₅H₇ by integration of the ¹¹B NMR resonances²⁷ at δ -116 and -80 in the spectrum of the product mixture, gave a value of 1.00:1.08.

Several additional experiments were conducted to determine the isomerization equilibrium constant. Pure samples of the 1,8,5,6 and 1,7,5,6 isomers were pyrolyzed separately for 20 min at 340°, yielding ¹¹B NMR-measured isomer ratios (1,8,5,6/1,7,5,6) of 1.01 and 1.01, respectively. Pure samples of each isomer were also heated at 240° for 196 hr, giving respective isomer ratios of 1.30 and 1.39. Values of K_{eq} and ΔH° calculated from these data are given in the main section.

Pyrolysis of 2,3,8,1,6-(η-C₅H₅)₃Co₃C₂B₅H₇, A 4-mg sample of $2,3,8,1,6-(\eta-C_5H_5)_3Co_3C_2B_5H_7$ was heated at 300° for 10 hr to give a very slight residue and 3.1 mg of metallocarboranes, which on PLC separation gave 0.1 mg each of 1,7,5,6- and 1,8,5,6-(η - $(C_5H_5)_2C_02C_2B_5H_7$, 2.3 mg of starting material, and <0.1 mg of $2,3,4,1,10-(\eta-C_5H_5)_3Co_3C_2B_5H_7.$

Acknowledgments, The pulse Fourier transform ¹¹B and ¹H NMR spectra obtained in this work were recorded on an instrument purchased in part from a Departmental instrument grant from the National Science Foundation. This work was supported in part by the Office of Naval Research.

References and Notes

- (1). W. N. Lipscomb, Science, 153, 373 (1966).
- (2) E. L. Muetterties and W. H. Knoth, "Polyhedral Boranes", Marcel Dek-
- ker, New York, N.Y., 1968. (3) R. N. Grimes, "Carboranes", Academic Press, New York, N.Y., 1970.
- (4) M. K. Kaloustian, R. J. Wiersema, and M. F. Hawthorne, J. Am. Chem.
- Soc., 94, 6679 (1972).
 D. F. Dustin, W. J. Evans, C. J. Jones, R. J. Wlersema, H. Gong, S. Chan, and M. F. Hawthorne, J. Am. Chem. Soc., 96, 3085 (1974).
- (6) W. J. Evans, C. J. Jones, B. Stibr, and M. F. Hawthorne, J. Organomet. Chem., 60, C27 (1973).
- T. P. Onak, R. P. Drake, and G. B. Dunks, Inorg. Chem., 3, 1686 (1964)
- (8) Work in the small metallocarborane area has recently been reviewed: R. N. Grimes, *Pure Appl. Chem.*, **39**, 455 (1974).
 (9) Polyhedral metallocarboranes¹⁰ and metalloboranes¹¹ with as few as
- six cage atoms have been prepared, and five-atom nido (open-cage) metalloboranes¹¹ are known.
- (10) V. R. Miller, L. G. Sneddon, D. C. Beer, and R. N. Grimes, J. Am. Chem.

Soc., 96, 3090 (1974).

- (11) V. R. Miller and R. N. Grimes, J. Am. Chem. Soc., 95, 5078 (1973).
- (12) W. J. Evans and M. F. Hawthorne, J. Amer. Chem. Soc., 96, 301 (1974).
- (13) R. N. Grimes, D. C. Beer, L. G. Sneddon, V. R. Miller, and R. Welss, *Inorg. Chem.*, **13**, 1138 (1974).
 (14) R. Welss and R. F. Bryan, unpublished results.

- V. R. Miller and R. N. Grimes, J. Am. Chem. Soc., 95, 2830 (1973).
 (16) (a) D. C. Beer, V. R. Miller, L. G. Sneddon, R. N. Grimes, M. Mathew, and G. J. Palenik, J. Am. Chem. Soc., 95, 3046 (1973); (b) W. T. Robinson and R. N. Grimes, manuscript in preparation. (17) The designation "very low-field" is relative and appears to have differ-
- ent application to the small (six- or seven-vertex) metallocarboranes vis-a-vis the larger cage systems. Thus, $^{11}{\rm B}$ NMR resonances of lowcoordinate borons adjacent to two metals have been found as low as -57 ppm (relative to BF₃ etherate) in the small cages^{10,13} but at much lower field (~ -80 to -120 ppm) in larger systems.^{10,15} In both cases, low-coordinate borons linked to only one metal atom produce signals at
- (18) W. J. Evans, G. B. Dunks, and M. F. Hawthorne, J. Am. Chem. Soc., 95, 4565 (1973)
- (19) The only a priori assumption employed¹⁰ in assigning the structure of $1,2,3,5-(\eta,-C_5H_5)_2Co_2C_2B_3H_5$ was that the cage carbons are nonadjacent, a near certainty since this species was originally prepared from $1,5-C_2B_3H_5.^{10}$
- (20) A triangle rotation in a pentagonal bipyramid can be accomplished in effect by two successive dsd operations, which would necessarily involve a pentagonal bipyramidal intermediate. However, triangle rotations are not required to proceed in this way, and might well occur via an open-cage intermediate or transition state in which the carbon atoms can avoid unfavorable coordination sites.
- (21) H. D. Kaesz, R. Bau, H. A. Beall, and W. N. Lipscomb, J. Am. Chem. Soc., 89, 4218 (1967).
- (22) H. Hart and W. N. Lipscomb, J. Am. Chem. Soc., 91, 771 (1969).
- (23) L. G. Sneddon, D. C. Beer, and R. N. Grimes, J. Am. Chem. Soc., 95, 6623 (1973).
- (23a) NOTE ADDED IN PROOF. The structure of the 1,8,5,6 isomer has been confirmed in an X-ray study: R. N. Grimes, to be submitted for publication.
- (24) W. J. Evans and M. F. Hawthorne, Inorg. Chem., 13, 869 (1974).
- (25) The isolation and characterization of metallocarborane samples as small as 1 mg or less have become routine, thanks to TLC and PLC techniques combined with the extreme sensitivity of Fourier transform NMR spectroscopy, which can generate signals of high signal/noise ratio on micromole-size samples.
- (26) The formation of the 1,2,3,5 isomer during the high-temperature degradation of the 1,7,2,4 species might be indicative of an equilibrium be-tween these species, since the 1,2,3,5 \rightarrow 1,7,2,4 conversion at lower temperatures is well established. However, at the lower temperatures $(340^\circ$ and below) there is no evidence for such an equilibrium. Due to the complexity of the 400° reaction in which extensive decomposition occurs, the significance of the formation of the 1,2,3,5 isomer cannot be determined.
- (27) The spectra employed for area integrations had signal/noise ratios of at least 50:1. The possibility of error in peak area measurements due to saturation effects was minimized by the use of sufficiently long time between pulses (60 msec) to permit virtually complete relaxation, since T pprox 2-5 msec. Since the area ratios utilized involve borons in comparable environments in both lsomers, and the areas are proportional to the degree of relaxation, any saturation effect would affect both isomers similarly and thus, in any event, leave the area ratios unchanged. However, we are grateful to a referee for raising this important point.